On a problem of S.L. Sobolev
نویسنده
چکیده
In 1930 Sergey L. Sobolev [6, 7] has proposed a construction of the solution of the Cauchy problem for the hyperbolic equation of the second order with variable coeffi cients in 3-d. Although Sobolev did not construct the fundamental solution, his construction was modified in 1986 by Romanov [4] to obtain that solution. However, these works impose a restrictive assumption of the regularity of geodesic lines in a large domain. In addition, it is unclear how to realize those methods numerically. In this paper a simple construction of a function, which is associated in a clear way with the fundamental solution of the acoustic equation with the variable speed in 3-d, is proposed. Conditions on geodesic lines are not imposed. An important feature of this construction is that it lends itself to effective computations.
منابع مشابه
روشهای تجزیه مقادیر منفرد منقطع و تیخونوف تعمیمیافته در پایدارسازی مسئله انتقال به سمت پائین
The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...
متن کاملOn a p(x)-Kirchho equation via variational methods
This paper is concerned with the existence of two non-trivial weak solutions for a p(x)-Kirchho type problem by using the mountain pass theorem of Ambrosetti and Rabinowitz and Ekeland's variational principle and the theory of the variable exponent Sobolev spaces.
متن کاملOptimal Quadrature Formulas with Derivative in the Space
Abstract This paper studies the problem of construction of optimal quadrature formulas in the sense of Sard in the space ( ) 2 (0,1) m L . In this paper the quadrature sum consists of values of the integrand and its first derivative at nodes. The coefficients of optimal quadrature formulas are found and the norm of the optimal error functional is calculated for arbitrary natural number 1 N m ≥ ...
متن کاملExistence of at least one nontrivial solution for a class of problems involving both p(x)-Laplacian and p(x)-Biharmonic
We investigate the existence of a weak nontrivial solution for the following problem. Our analysis is generally bathed on discussions of variational based on the Mountain Pass theorem and some recent theories one the generalized Lebesgue-Sobolev space. This paper guarantees the existence of at least one weak nontrivial solution for our problem. More precisely, by applying Ambrosetti and Rabinow...
متن کاملCounting Schrödinger Boundstates: Semiclassics and Beyond
This is a survey of the basic results on the behavior of the number of the eigenvalues of a Schrödinger operator, lying below its essential spectrum. We discuss both fast decaying potentials, for which this behavior is semiclassical, and slowly decaying potentials, for which the semiclassical rules are violated. The outstanding personality of Sergey Lvovich Sobolev determined the development of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Math. Lett.
دوره 59 شماره
صفحات -
تاریخ انتشار 2016